Data Mining Practical Machine Learning Tools and Techniques |
Foreword
Technology now allows us to capture and store vast quantities of data. Finding
patterns, trends, and anomalies in these datasets, and summarizing them
with simple quantitative models, is one of the grand challenges of the information age—turning data into information and turning information into
knowledge.
There has been stunning progress in data mining and machine learning.
The
synthesis of statistics, machine learning, information theory, and computing has
created a solid science, with a firm mathematical base, and with very powerful
tools.
Witten and Frank present much of this progress in this book and in the companion implementation of the key algorithms. As such, this is a milestone in the synthesis of data mining, data analysis, information theory, and machine learning. If you have not been following this field for the last decade, this is a great way to catch up on this exciting progress. If you have, then Witten and Frank’s presentation and the companion open-source workbench, called Weka, will be a useful addition to your toolkit.
Witten and Frank present much of this progress in this book and in the companion implementation of the key algorithms. As such, this is a milestone in the synthesis of data mining, data analysis, information theory, and machine learning. If you have not been following this field for the last decade, this is a great way to catch up on this exciting progress. If you have, then Witten and Frank’s presentation and the companion open-source workbench, called Weka, will be a useful addition to your toolkit.
They present the basic theory of automatically extracting models from data,
and then validating those models. The book does an excellent job of explaining
the various models (decision trees, association rules, linear models, clustering,
Bayes nets, neural nets) and how to apply them in practice. With this basis, they
then walk through the steps and pitfalls of various approaches.
They describe
how to safely scrub datasets, how to build models, and how to evaluate a model’s predictive quality. Most of the book is tutorial, but Part II broadly describes how commercial systems work and gives a tour of the publicly available data mining workbench that the authors provide through a website. This Weka workbench has a graphical user interface that leads you through data mining tasks and has excellent data visualization tools that help understand the models. It is a great companion to the text and a useful and popular tool in its own right.
how to safely scrub datasets, how to build models, and how to evaluate a model’s predictive quality. Most of the book is tutorial, but Part II broadly describes how commercial systems work and gives a tour of the publicly available data mining workbench that the authors provide through a website. This Weka workbench has a graphical user interface that leads you through data mining tasks and has excellent data visualization tools that help understand the models. It is a great companion to the text and a useful and popular tool in its own right.
This book presents this new discipline in a very accessible form: as a text
both to train the next generation of practitioners and researchers and to inform
lifelong learners like myself. Witten and Frank have a passion for simple and
elegant solutions. They approach each topic with this mindset, grounding all
concepts in concrete examples, and urging the reader to consider the simple
techniques first, and then progress to the more sophisticated ones if the simple
ones prove inadequate.
If you are interested in databases, and have not been following the machine learning field, this book is a great way to catch up on this exciting progress.
If you are interested in databases, and have not been following the machine learning field, this book is a great way to catch up on this exciting progress.
If
you have data that you want to analyze and understand, this book and the associated Weka toolkit are an excellent way to start.
Download Link
No comments:
Post a Comment